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Abstract. We solve Einstein’s field equations for gravitational radiation propagating in a 
background metric given by the interior Schwarzschild solution. Expressions for the trans- 
mitted fraction as a function of frequency and propagation distance are found. Absorption 
is found to be present only for frequencies less than a critical frequency, the ‘gravitational 
plasma frequency’, which is roughly proportional to the square root of the mean density of 
the medium. The plasma frequency veri, is found to be a useful concept for gravitational 
radiation, though the fraction transmitted does not fall as rapidly with distance of propaga- 
tion below v,,,, as it does in the analogous electromagnetic case and the transition to total 
transmission is not as abrupt as a function of frequency. For a neutron star \?er,, = 6700 Hz, 
well above the low frequencies of most current gravitational radiation detectors. 

1. Introduction 

Considerable attention has been given in recent years to the production and detection 
of gravitational radiation (many references are given in Press and Thorne 1972 and 
Misner et al 1973) occasioned by the apparent discovery of such radiation by Weber 
(1969, 1970a, b). Attention has also been given to the propagation of gravitational 
radiation with its refraction redshift, and backscatter. Little or no work has been done 
however on a possible ‘gravitational plasma frequency’. In studying gravitational 
radiation propagating in the Robertson-Walker background metric, Weinberg (1972) 
found absorption at low frequencies and plane wave type propagation at  high frequencies 
with a very gradual transition between the two kinds of behaviour. For this situation 
a ‘gravitational plasma frequency’ seems to be meaningless. In this paper we want to 
explore the propagation of gravitational radiation inside dense stars as a function of 
frequency and look in particular to see if a ‘gravitational plasma frequency’ characterizes 
the propagation. Below we consider a background metric given by the interior Schwarzs- 
child solution and find a relatively sharp transition between absorption and free 
propagation with a meaningful gravitational plasma frequency. For a density of 
p = 1014 g cm-3 the critical frequency found below is 6700 Hz. Calculations, for 
example, of gravitational radiation from a vibrating neutron star which neglect absorp- 
tion at frequencies below this will be in error. 

2. Solution of field equations 

We want to find radiative solutions to Einstein’s field equations corresponding to 
gravitational waves propagating through dense media. Specifically let us consider weak 
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gravitational radiation in a background metric given by the interior Schwarzschild 
solution for an incompressible fluid, and investigate its absorption as it travels through 
the star. The metric is g,, + h,, where h,, is small and g,, is given by the line element of 
the interior Schwarzschild metric in isotropic coordinates from Msller (1952) as 

(1) ds2 = V do2 - We2 dt2 

where 

V = 4h2R2(h2 + r 2 ) - 2  

W 

A = 31 -r i2 /R2) l i2  

R 2  3 3c2/8nGp = r 3 m  

[ A  - &h2 - r2) (hz  + r2 ) -  '1' 

In these definitions p is the average density of matter in the star, m G M / c 2 ,  M is the 
mass of the star, G is the gravitational constant and r: is the radius of the star defined 
through M 3 (4n/3)rL3p ; r,  is the radius of the star in the isotropic coordinates we are 
using. It is not related to M and p simply and is given in terms of r: by ( 8 )  which also 
relates standard and isotropic coordinates in general, if the subscripts are dropped. 

We will work in the transverse traceless (TT) gauge of Misner et a1 (1973) for h,, 
corresponding to radiative solutions. A radiative solution can always be put into TT 
gauge whereas non-radiative h,, cannot. The coordinate conditions are then 

hPo = 0 

hkj l j  = 0 (summed) (9 )  
h k k  = 0 (summed), 

where a single vertical bar denotes ordinary differentiation and a double vertical bar 
denotes covariant differentiation. Our final results will be gauge invariant as we will 
see later. The perturbation h,, produces in the Ricci tensor a perturbation 

where the perturbations in the affine connections are given by 

Using the coordinate conditions (9) and the metric (1) gives 

6Roo = 0 

1 V' W f  6Roi  = - X . h . .  -+- 
2v ' ..I.( v w ) 

6Rj ,  = complicated expression, 
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where a dagger denotes d/d(r2). Now the unperturbed energy momentum tensor is 

where P is the pressure. If we define 

then the perturbations in S,, due to h,, are given by 

6SF0 = 0 (18) 

where the first-order changes in p. P and T", are set equal to zero for radiative solutions 
from Weinberg (1972). The Einstein equations 

6R,, = - (87tG/c2)dS,, (19) 

are satisfied identically for p = 0, v = 0. From (13) and (18) we must have the additional 
restriction that X j h i j l 0  = 0 for (19) to hold for p = 0, v = i. We shall limit ourselves to 
the class of solutions for which Xjh i j  = 0. With this restriction (14) greatly simplifies 
and we have 

where we used (17). This is the equation we must solve for h j k .  In flat space p = 0, 
P = 0, I/ = 1, W = 1 so that (20) reduces to O 2 h j k  = 0 with plane wave solutions as 
it must. We can simplify (20) if we note that for all systems of physical interest h2 >> r2  
for r < r , .  A good approximation is then to neglect r2 relative to h2 in (2) and (3) and 
in I/' and Wt. Let us also take the time dependence of h j k  to be of the form hjk K e'"'. 
Then (20) can be written as 

V2hjk+IXihjqj+Jhjk = 0 (21) 
where 

and 

J contains the right-hand side of (20). For a neutron star of one solar mass (the least 
favourable case for the above approximations), p = 1014 g cm- 3,  h2 = 20+6rf, r, = 15.2 
km, R = 40 km, rk = 16.8 km and A = 1.36 so that our approximation h2 >> r2 for 
r < r ,  is still quite good. In terms of m and rk this approximation implies that we must 
have 

[I + (1 - 2m/ri)"2]2 >> 2m/r: 
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from (8) and (5). Thus for densities in excess of I O l 4  g cm-3 this approximation breaks 
down. Our attention will be restricted to p < l o i 4  g cm-3 below. 

The only r dependence in J now comes in through the pressure term. From M ~ l l e r  
(1952) this pressure term can be written as 

3P 31 - r’2/R2)”2 - A  
(24)  

where I have written this in terms of the radial coordinate r‘ instead of the isotropic 
coordinate r because the pressure and the constant A are both much simpler in terms of 
r’ ; rand r’ are related by (8). P vanishes at the star’s surface and is maximum at the centre. 

_. - 
pc2 - R ~ [ A - ~ I  - r ” / ~ ~ ) ~ : ~ ]  

0.161 

in the least favourable case when p = 
term in (23) so that 

In  the following we shall neglect the 3P/pc2 

and both J and I are constants independent of r. This is an excellent approximation 
for high frequencies where w2R2/c2 >> 1. As o R  + 0 errors of the order of 15 will be 
introduced which will not materially affect either our conclusions that follow or their 
physical applicability. 

Equation (21)  is now tractable and can be separated easily and solved as it stands. 
Let us now restrict ourselves to the case of waves travelling in the X direction. No 
significant aspect of the problem is lost in doing this and it simplifies things somewhat. 
Equation (21) then becomes 

d2hjk dhjk 
-++X -+ Jhjk  = 0. 
dX2 dX 

This is the differential equation we must solve. Note that the quantity A is real in (22)  
and (23) if and only if r:2/R2 = 2m/ri < 1. This is just the condition that the star is not 
collapsed to a black hole. 

We can write (27) in  terms of the dimensionless variable z = X J ( 1 / 2 )  as 

d2hjk dh,, J 
dz2 dz I 

-+222-+2-h,, = 0. 

Let h .  = Q e-” where we suppress the indices on Qjk for convenience. The differential 
equation for Q is then J! 

d2 d 
dz2 --Q-2z-Q+26Q dz = 0 (29)  

where 

For stars with densities p < 10l2, 6 2: 3 0 2 R 2 / c 2 - 2 ) .  This is fairly accurate even at 
p = The variable z < 0.6 inside stars with p 5 l O I 4  g ~ m - ~ .  
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One solution of (29) for integer 6 is 

Qi(z) = C,H,(z) (30) 

where C, is a constant and H, is the Hermite polynomial of order 6 from Abramowitz 
and Stegun (1964). H,(z) obeys the recurrence relation 

(31) H,, 1 = 2zH6-26Ha- 1 

and we also have 

For the recursion relation H, E 1 and H = 22. A second linearly independent solution 
to our second-order differential equation (29) for integer 6 is 

where D, is a constant and 

The P,(z) defined by (34) satisfy the same relations (31) and (32) as H,(z). We can calculate 
them using the same recursion relation (31) but with 

P,(z) = Joz e'' dt 

and 

The P6(z) are not polynomials but are very closely related to the H,(z) in much the same 
way that cos k X  is related to sin k X .  

For very small z we expect the solution of (28) to be 

hjk(z) = Re ejk exp{ i[(6 + 1)2]1'2z} + Re e$ exp{ - i[(6 + 1)2] 'I2z} (36) 

where ejk is a unit polarization tensor with components restricted by the TT coordinate 
conditions. We can normalize our solutions (30) and (33) defined by the recurrence 
relations by requiring that 

cos[2(6+ 1)]"2z 6 even 

sin[2(6+ 1)]1'2z 6 odd 
C ,  e-z2H6(z) -+ 

and 

sin[2(6+ 1)]''2z 6 even 

COS[2(6 + l)] l i 2 Z  6 odd 
D, e--"P,(z) + 

(37) 

for small z. We are assuming that plane wave radiation starts at z = 0 and then 
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propagates into the material media. The normalization constants are then given by 

6 even 

( - 1)6’2[2(6 + l)] l i2 

26(6/2)! 
D, = 6 even 

6 even. 

(39) 

The complete normalized solution of the field equations (20) is then 

hjk(z) = Re ejk eiot(C, e-”H,(z)+ iD, e-”P,(z))+ Re eTj eior(C, e-”H,(z)-ill, e-”P,(z)), 

(43) 

where hjk is given as a function of the dimensionless distance of propagation into the 
medium z and as a function of frequency (through w and 6). 

We are now interested in the behaviour of our solution (43) for high frequencies. 
In particular we want to see if some sort of ‘plasma frequency’ seems to be present 
above which (43) behaves like a plane wave and below which significant absorption of 
the incident radiation occurs. We need H, and Pa for very large 6. Unfortunately H, is 
tabulated only for small 6 by Russel (1933) and Pa is not tabulated at all. We calculated 
these quantities on the computer using the recursion relations and initial values of 
H,, H , ,  Po and PI. The results were verified by several methods and shown to be 
accurate even for large 6 .  We actually calculated 

which satisfies 

rather than H, since H, or P, becomes very large and Sd does not. 
For calculations we considered a series of stars each of one solar mass but with 

different mean densities. Densities in multiples of ten were chosen from p = 1 to 
l O I 4  g cm- ’. We calculated the solution (43) for z corresponding to propagation through 
a distance corresponding to the radius of the star for each p.  Thus we calculated how 
much radiation would emerge from the surface of the star if a one-dimensional plane 
wave were emitted at the centre. This is only one of several ways in which numerical 
calculations based on our solution (43) could be presented. We chose this rather 
unphysical case because we are more interested in the density and frequency dependence 
of the wave propagation than in detailed geometrical considerations. Our calculation 
is clearly an approximation for problems with gravitational radiation impinging on the 
star from the outside, for the propagation of the gravitational radiation generated by 
a vibrating star through that star, for a three-dimensional wave of radiation travelling 
outward through a shell of matter in a supernova explosion, etc. The interesting density 
and frequency dependence we find below for the emerging radiation should be generally 



1404 D K Ross 

valid. We do  not mean to imply that stars really d o  emit plane gravitational waves 
from their centres. 

We would now like to  find a measure of the amount of gravitational radiation 
emerging from the star. The amplitude of the wave H is given by 

H 2  = i(hiJhij)  (46) 

where the brackets indicate an average over a region of space corresponding to several 
wavelengths. It is necessary to do  this because gravitational energy cannot be localized 
over distances less than a wavelength of the radiation according to Isaacson (1968). 
Putting (43) into (46) and discarding terms which go as e* 2ior gives 

H2(z) = egej*k[(Ca e-z2H,(z))2 + (D,  e-Z2P,(z))2]. 

H2(z = 0) = ejkeyk 

(47) 

(48) 

At z = 0 we have 

for the initial plane wave, since the z-dependent factor in (47) becomes 

c0s2[2(6+ 1)]”2z+sin2[2(6+ l)]”2z = 1 

as z approaches zero. 

flux in the X direction, 
Another measure of the amount of radiation emerging from the star is the energy 

where Rol‘2’ is the second-order part of the curvature tensor R o l .  We have from 
Weinberg (1972) 

3 io i, , io , 
4 c  2c 

ROl‘2’ = -- --h hij+--h hi1 

where we have used the TT coordinate conditions to  greatly simplify this. A prime 
denotes differentiation with respect to X .  If we limit ourselves again to the one-dimen- 
sional problem and assume that h,, is a function of X and t only, we obtain 

If we again average over several wavelengths and divide by the flux at X = 0 we have 

+ C, e-”H,(z)D,- e-”P6- l(z) (52) 
where we used (32) and z 3 XJ(Z/2) to  calculate hij. 

For the one-dimensional waves we are considering, neither the amplitude of the 
waves (47) nor their energy flux in the X direction (52) is as significant a measure of 
absorption as their momentum in the X direction, K , .  For a plane wave 

(hijh:j) OC CiJC:K, (53) 
and 

(54) H2 = $(h’jh..) = CiJC*. 
11 11. 
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Then 

where we used (51), (53) and (54). Let us define the quantity in ( 5 5 )  for more general 
waves as the transmission coefficient 5 This should be a sensitive measure of the 
amount of momentum and hence energy absorbed as the wave propagates through the 
medium. We note that F is gauge invariant since Weinberg (1972) has shown that ( t , , )  
is gauge invariant and since the gauge invariance of (tal) a (H2) '  assures the gauge 
invariance of H2 in our case. Thus even though we have worked in the TT gauge through- 
out, our results in terms of F will be gauge invariant. We can calculate F for our waves 
readily from (47), (48) and (52). We expect F < 1 for all frequencies and propagation 
distances z.  Also from our original differential equation we expect plane wave type 
solutions for high frequencies (large 6 1 for high 
frequencies. 

The results for F as a function of frequency are shown for p = lo'', 10l2, 1013 and 
loi4 g cm- in figure 1.  The mass of the star is fixed at lMo and we are calculating the 
fraction of the K ,  which emerges from the star relative to  the initial K, at X = 0. It 
should be noted that our solution (43) is valid only for integer 6 and is not valid for 
intermediate values of the frequency. One interesting value of F is that for o -, 0 where 

J / I -  1 in (28)) and expect 5 

I I I 

I 0' I o4 
u(Hz) 

Figure 1 .  The transmission coefficient I is plotted as a function of frequency for various 
average densities p. The total mass of the star is fixed at lM,. 9- gives the fraction of the 
initial momentum in the wave which successfully traverses a distance corresponding to 
the radius of the star. Small arrows on the left indicate I at v = 0 where the absorption is 
a maximum. 
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the absorption is maximum. This corresponds to 6 = - 3 ,  giving 

Ql(z) * 1+$z2+&z4+-#&z6+ . . .  . 

Q2(z) = J($)z( 1 + $z2 + g z 4  + . . .) 

(56) 

The other solution to (29) is given by (34) and is 

(57) 

where we have normalized as in (37) and (38). (56) and (57) can then be used to calculate 
the values of F at w = 0 as shown in figure 1. 

3. Conclusions 

An examination of figure 1 leads to several conclusions. 
(i) F + 1 and our solutions become plane waves for high frequencies. 

(ii) High-density stars absorb much more gravitational radiation than low-density 
stars of the same total mass. 

(iii) The maximum absorption occurs at low frequencies and is 1 %, 6 %, 13 "/, and 
28 % for p = lo", lo", l O I 3  and 1014 respectively. The absorption is insignificant for 
stars with lM, and p < 10'' and is not shown in figyre 1. 

(iv) The transmission coefficient F shows a very marked step-like behaviour when 
plotted as a function of frequency. The step is much more pronounced at p = 1014 than 
at p = 10". (The reader is cautioned that the frequency scale is logarithmic in figure 1. 
The sharp step persists in a linear plot but loses much of its low-frequency 'tail'.) This 
behaviour is highly reminiscent of the behaviour of electromagnetic waves traversing 
a plasma. There the transmission is one above the plasma frequency wp and exponential 
absorption occurs below w,. From figure 1 the critical frequencies above which our 
solutions are essentially plane waves are approximately 240, 1700, 4100 and 6700 Hz 
for p = lo", lo'', 1013 and 10'4gcm-3 respectively. In terms of 6 these critical 
frequencies occur approximately at 6 = 130, 70, 40 and 10 respectively. Empirically 
we have then 

(58) Gcri, N 10+30 lg(1014 g cmP3/p) 

at least in this density range. Now 

6 - $w2R2/2-2] $ I J ~ R ~ / c ~ .  

Thus we can write the critical 'plasma frequency for gravitational radiation' as 

wcrit cJ30 v = - N -[1+3 lg(10'4/p)]'12. crit - 271 2aR (59) 

From (5) then we have 

vCrit * J(20Gp/lr)[l+ 3 lg(10'4/p)]'12. (60) 

In the electromagnetic case wp K JN, and here wcrit c i J p  with a further weak p 
dependence from the log term in (59). In the electromagnetic case the transition from 
exponential attenuation to total transmission occurs very sharply at  w = w,. In the 
gravitational case the transition is slower though still rather sharp from figure 1. It 
should be noted that in figure 1 the critical wavelength is of the same order of magnitude 
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as the radius of the star and this certainly influences the maximum attenuation obtained. 
Because of this we include figure 2 which shows what happens if we do not 'run out of 
star' at  a particular density. 

Figure 2. The full lines give the transmission coefficient J as a function of distance of 
propagation for zero frequency and for the indicated densities. Also indicated is the mass 
of the star in solar masses corresponding to that radius (or distance of propagation) and 
mean density. We are considering now a series of stars with different total mass or equiva- 
lently looking at S ( r )  within a large star. The broken curves shown for comparison are 
plots of exp(-3r2/2R2) 5 e-". 

(v) Below the 'plasma frequency' we get attenuation that goes approximately, as 
e-22 where z is our dimensionless distance variable. This is shown in figure 2 where the 
transmission coefficient F is plotted as a function of distance for zero frequency. The 
curves will be similar for any frequency below the critical frequency. Now we are 
essentially fixing p and considering a series of stars with different total mass or equiv- 
alently looking at the transmission as a function of distance of propagation within a 
large star. The dotted curves in figure 2 correspond to exp( - 3r2/2R2)  where R 2  is given 
by (5).  Since 

z2 'Y 3r2/R2)(1  +?r2/R2) 

this is approximately a plot of e-r2. Since z is always less than one for objects of physical 
interest and ranges from 0.11126 to 0.5924 as p increases from 10'' to I O l 4  g cm-3, the 
gravitational attenuation occurs more slowly as a function of distance than the corre- 
sponding electromagnetic attenuation. Nevertheless we see that the concept of a 
'gravitational plasma frequency' can be applied usefully to gravitational radiation 
propagating in dense media. 
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